Insulin stimulates the tyrosine phosphorylation of caveolin

نویسندگان

  • C C Mastick
  • M J Brady
  • A R Saltiel
چکیده

The specialized plasma membrane structures termed caveolae and the caveolar-coat protein caveolin are highly expressed in insulin-sensitive cells such as adipocytes and muscle. Stimulation of 3T3-L1 adipocytes with insulin significantly increased the tyrosine phosphorylation of caveolin and a 29-kD caveolin-associated protein in caveolin-enriched Triton-insoluble complexes. Maximal phosphorylation occurred within 5 min, and the levels of phosphorylation remained elevated for at least 30 min. The insulin-dose responses for the tyrosine phosphorylation of caveolin and the 29-kD caveolin-associated protein paralleled those for the phosphorylation of the insulin receptor. The stimulation of caveolin tyrosine phosphorylation was specific for insulin and was not observed with PDGF or EGF, although PDGF stimulated the tyrosine phosphorylation of the 29-kD caveolin-associated protein. Increased tyrosine phosphorylation of caveolin, its associated 29-kD protein, and a 60-kD protein was observed in an in vitro kinase assay after incubation of the caveolin-enriched Triton-insoluble complexes with Mg-ATP, suggesting the presence of an intrinsic tyrosine kinase in these complexes. These fractions contain only trace amounts of the activated insulin receptor. In addition, these complexes contain a 60-kD kinase detected in an in situ gel kinase assay and an approximately 60 kD protein that cross-reacts with an antibody against the Src-family kinase p59Fyn. Thus, the insulin-dependent tyrosine phosphorylation of caveolin represents a novel, insulin-specific signal transduction pathway that may involve activation of a tyrosine kinase downstream of the insulin receptor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The insulin receptor catalyzes the tyrosine phosphorylation of caveolin-1.

Our previous studies revealed that insulin stimulates the tyrosine phosphorylation of caveolin in 3T3L1 adipocytes. To explore the mechanisms involved in this event, we evaluated the association of the insulin receptor with caveolin. The receptor was detected in a Triton-insoluble low density fraction, co-sedimenting with caveolin and flotillin on sucrose density gradients. We also detected the...

متن کامل

Rapid Insulin-Dependent Endocytosis of the Insulin Receptor by Caveolae in Primary Adipocytes

BACKGROUND The insulin receptor is localized in caveolae and is dependent on caveolae or cholesterol for signaling in adipocytes. When stimulated with insulin, the receptor is internalized. METHODOLOGY/PRINCIPAL FINDINGS We examined primary rat adipocytes by subcellular fractionation to examine if the insulin receptor was internalized in a caveolae-mediated process. Insulin induced a rapid, t...

متن کامل

Identification of pY19-caveolin-2 as a positive regulator of insulin-stimulated actin cytoskeleton-dependent mitogenesis

Mitogenic regulation by caveolin-2 in response to insulin was investigated. Insulin triggered phosphorylation of caveolin-2 on tyrosine 19. Insulin increased the interaction between pY19-caveolin-2 and phospho-ERK, and that interaction was inhibited by a MEK inhibitor U0126. Insulin-induced interaction of caveolin-2 with phospho-ERK was prevented when tyrosine 19 is mutated to alanine. Insulin ...

متن کامل

p38 Kinase Regulates Nitric Oxide-induced Dedifferentiation and Cyclooxygenase-2 Expression of Articular Chondrocytes

Background: Caveolin, a family of integral membrane proteins are a principal component of caveolae membranes. In this study, we investigated the effect of p38 kinase on differentiation and on inflammatory responses in sodium nitroprusside (SNP)treated chondrocytes. Methods: Rabbit articular chondrocytes were prepared from cartilage slices of 2-week-old New Zealand white rabbits by enzymatic dig...

متن کامل

Essential role of caveolae in interleukin-6- and insulin-like growth factor I-triggered Akt-1-mediated survival of multiple myeloma cells.

Caveolae, specialized flask-shaped lipid rafts on the cell surface, are composed of cholesterol, sphingolipids, and structural proteins termed caveolins; functionally, these plasma membrane microdomains have been implicated in signal transduction and transmembrane transport. In the present study, we examined the role of caveolin-1 in multiple myeloma cells. We show for the first time that caveo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 129  شماره 

صفحات  -

تاریخ انتشار 1995